Chinese culture has long treated ailments using herbal extracts in intricate combinations. This oeuvre of herbal experimentation gave rise to purified forms more recognisable as medicines, of which Artemisinin is one success story.
Fluorescein: biology’s guide dog
One of the first fluorescent molecules to be synthesised by humans was Fluorescein. The imposing German chemist Adolf von Baeyer created it in 1871, and was awarded the 1905 Nobel Prize in Chemistry for his work on dyes and aromatic compounds.
Benzene: the aromatic circle
My seventh chemical of Christmas is not routinely made in biology, and is actually lethal to most large animals. Crafted by extremely inventive chemists in the 19th Century, benzene is a beautifully symmetric molecule with 6 carbons and 6 hydrogens.
Caffeine: protector of plants
Ah, the smell of coffee brewing, of tea steaming, hot chocolate beckoning on a cold winter’s day… the fizzy kick of Coca-Cola on a long journey. It’s wonderful, really. The taste, feel and cultural significance of each of these drinks may differ, but they all share one key ingredient: caffeine. Caffeine is the most commonly used mood-altering drug for humans: it wakes us up, prepares our minds for work, keeps us alert (we think) and provides a shared experience during informal interactions.
Vancomycin: last line of defence
One of the most important discoveries of the 20th Century was antibiotics: chemicals that kill bacteria but not their human hosts. It changed the shape of human society as people began to survive septic cuts, everyday horrific infectious diseases, syphilis and tuberculosis.
Aspirin: the first modern drug
Preparations derived from willow have been a regular feature of the human medicine cabinet for centuries: Ancient Egyptians drank willow ‘tea’ to relieve pain, and the Classic Greek physician Hippocrates wrote about the remedy in 400 BC. But it took a team of German chemists in 1897, working for Bayer, to synthesise a pure compound related to the active substances in willow, acetylsalicylic acid. They packaged it up neatly in pill form, and sold it under its trademarked name, Aspirin, which quickly became a household word.
Serotonin: happy signals
Small molecules can be great for sending biochemical signals between cells, or between different parts of a cell, because they can diffuse rapidly in water – notably, the water in your body. Big, multicellular organisms rely on hundreds of such molecules to get on with the business of living.
ATP: go, go, go!
If there is one molecule that could be called the ‘currency’ of life, it is ATP: adenosine triphosphate. It belongs to a large class of molecules of life, which are all high in energy and have constituent parts that would – given enough time – much prefer to separate.
Water: the life of the party
Water is such an everyday substance – you use water to wash, drink, make food; it is commonplace in our weather and rivers, and surrounds us in oceans. Its ubiquity is not only important for our environment: it is absolutely critical for life.
Information and Biology
This is an idle muse on information and biology as I wait for my SFO to Burbank plane (also an experiment in “fast blogging”).
Biology is truly an information science – what are biological systems? They are way more than the atoms that make them up; they are far more than just the molecules that make them up; ultimately they are remarkable systems which can harness the inevitable flow of energy towards heat to their own persistence and, in many animal’s case, information capture and decision making.